Principal Investigator

Prof. Alan Hubbard
Biography: Dr. Alan Hubbard is Professor of Biostatistics and Head of the Division of Biostatistics at UC Berkeley. His current research interests include causal inference, variable importance analysis, statistical machine learning, estimation of and inference for data-adaptive statistical target parameters, and targeted minimum loss-based estimation. Research in his group is generally motivated by applications to problems in computational biology, epidemiology, and precision medicine.
GitHub: ahubb40
Homepage: ahubb40.github.io


Post-Docs

Inna Gerlovina
Biography: Inna is a long time resident of Berkeley, CA, and a native of St-Petersburg, Russia, where she studied at the Conservatory of Music before turning to Statistics. She is currently a postdoctoral scholar in the Division of Biostatistics at UC Berkeley, from which she graduated with a Ph.D. in Biostatistics in December 2016. She works on small sample inference and higher-order approximations (Edgeworth expansions, bootstrap).
GitHub: innager


Graduate Students

Wilson (Weixin) Cai
Biography: Wilson is a second-year graduate student in the Division of Biostatistics at UC Berkeley and is jointly advised by Profs. Alan Hubbard and Mark van der Laan. His research interests lie in statistical machine learning and causal inference. Prior to Berkeley, he obtained a Bachelor’s (B.Sc.) degree in Statistics from the Univeristy of Hong Kong.
GitHub: wilsoncai1992

Jeremy Coyle
Biography: Jeremy Coyle is a Ph.D. candidate in Biostatistics at UC Berkeley. His research interests include cross-validation, resampling estimators, and optimal treatment parameters. Jeremy has applied machine learning methods to a variety of applications, including stove use monitoring, treatment assignment for victims of traumatic injury, and the translation of raw sensor data into meaningful estimates.
GitHub: jeremyrcoyle

Nima Hejazi
Biography: Nima is a Ph.D. student in the Division of Biostatistics, where he is jointly advised by works Profs. Alan Hubbard and Mark van der Laan. His research interests encompass varied aspects of causal inference and nonparametric statistics, with a focus on the development of robust methods for addressing inference problems arising in precision medicine, computational biology, survival analysis, and clinical trials.
GitHub: nhejazi
Twitter: @nshejazi
Homepage: nimahejazi.org
Departmental: stat.berkeley.edu/~nhejazi

Chris J. Kennedy
Biography: Chris is interested in RCTs, targeted machine learning, and causal inference applied to precision medicine, particularly trauma. He works with Alan on the varImpact R package, health prediction for trauma patients (e.g. traumatic brain injury), and analysis of biometric waveform data. He also co-maintains the SuperLearner R package, employs high performance computing (Savio cluster, Amazon EC2), and is a D-Lab consultant & instructor.
GitHub: ck37
Twitter: @c3K
Homepage: ck37.com

Jonathan Levy
Biography: Jonathan is a musician returning to his mathematical roots, pursuing a renaissance-view of marrying the endeavors of humanity in the face of practical specialization. His interests within biostatistics revolve around being an advocate for scientists who have critical questions and for those who need a voice from someone trained in the field of statistics, who will look at the science and literature as well as issues not related to science, to shed light on health issues, rather than simply taking refuge in the most highly promoted establishment views.
GitHub: jlstiles
Homepage: jlstiles.com

Ivana Malenica
Biography: Ivana is a second-year graduate student in the Division of Biostatistics at UC Berkeley. Broadly, her research interests span causal inference, high-dimensional data, machine learning, and semiparametric theory.
GitHub: podTockom
Google Scholar: profile

Sara Moore
Biography: Sara is a Biostatistics Ph.D. candidate in her final year of study at UC Berkeley. She received her B.A. in Computer Science and Psychology from Duke University and subsequently worked as a researcher in brain imaging labs at Duke and Emory Universities. Her current research focuses on machine learning methodology for the prediction of adverse health-related outcomes in trauma care patients, prediction of mass trauma events using social media data, data visualization, and statistical software package development. She also currently works as a consultant at Genentech in South San Francisco.
GitHub: saraemoore
Twitter: @sara_e_moore
Homepage: saraemoore.com

Andre Kurepa Waschka
Biography: Andre is a fourth-year Ph.D. student in Statistics at UC Berkeley. He finished his M.A. in Biostatistics under Dr. Hubbard in 2016. He graduated from North Carolina State University with a B.S. in Applied Mathematics, B.S. in Economics, and a minor in Statistics.
GitHub: akwaschka


Collaborators

Prof. Romain Pirracchio
Biography: Prof. Pirracchio is a French M.D., Ph.D., hailing from Paris. He obtained his M.D. in 2003, with a specialization in Anesthesiology and Critical Care Medicine. In 2008, he obtained a Master’s degree in Medical Research Methodology and Biostatistics. He completed his doctoral studies in the Department of Biostatistics and Medical Informatics (DBIM, unité INSERM U-1153) at Hôpital Saint Louis, Paris, France in 2012 under the guidance of Prof. Sylvie Chevret. In 2012-2013, He spent a year as a postdoctoral fellow in Biostatistics in the School of Public Health at the University of California, Berkeley, where he worked under the supervision of Prof. Mark J. van der Laan and Prof. Maya L. Petersen. Back in Paris, he was the director of the surgical and trauma ICU at European Hospital Geroges Pompidou (2013-2015) and a researcher in Biostatistics at the INSERM U-1153 unit. In January 2015, Dr. Pirracchio joined the Department of Anesthesia and Perioperative care at the San Francisco General Hospital & Trauma Center (UCSF) as Associate Professor. Since September 2016, he has been at the European Hospital Geroges Pompidou in Paris, serving as Full Professor and Vice Chair for ICUs. He is also Adjunct Associate Professor at UCSF and affiliate to the Division of Biostatistics at UC Berkeley.
Homepage: romainpirracchio.org


Administrative Contacts

Lucas Carlton
Administrative and Research Assistant
Colford-Hubbard Research Group
775 University Hall
Berkeley, CA 94720
Phone: 510-643-0238

Melanie Gendell
Administrative Manager
Colford-Hubbard Research Group
787 University Hall
Berkeley, CA 94720
Phone: 510-643-5742